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The spectrum of integral operators with logarithmically 
divergent norm 

D V Shapoval, I V Simenog, 0 G Sitenko and J W Darewycht 
Bagolpbav Institute for Theoretical Physics, 252143 Kiev, Ukraine 

Received 1 April 1993 

Abstract. The spectrum and general characteristics of the solutions of non-Fredholm inte- . 
gral equations, which arise in the description of relativistic bound states, is investigated. 
AD efficient method of numerical solution of such equations is suggested, which allows one 
to obtain a m a t e  values of the solution for all physically relevant values of the wupling 
constant. The procedure is illustrated on specific examples. 

1. Introduction 

In the theoretical description of relativistic few-particle systems one frequently encoun- 
ters integral equations with a kernel whose norm diverges logarithmically at large 
momenta. Such equations arise, for example, in various reductions of the Bethe-Salpeter 
equation (see, for example, [l-31 and citations therein) or in Hamiltonian variational 
approaches [46]. Similar equations arise also in various other problems in quantum 
field theory [7]. As a simplest example we might consider the so-called Salpeter equation 
PI 

which arises in the description of two spinless particles of mass M ,  interacting via the 
exchange of a scalar quantum of mass m. Equation (1) is seen to be a relativistic 
momentum-space Schrodinger equation ( h = c =  1) for the relative motion of the two- 
particles of mass M, with a Yukawa potential of range r'c I/m (note that f / ( Q * + d )  
is just the Fourier transform off(e-"'/r)). 

In the present article, we study the general behaviour of the eigenenergy spectra 
(for E < 2 M )  and solutions of logarithmically singular equations of type (l), and con- 
sider efficient methods of numerical solution. 

2. Reduction to Fredholm form 

Let us consider spherically symmetric solutions of equation (l), since the nature of the 
large-momentum singularity does not differ in principle for higher partial waves. If we 
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figure 1. The complex s plane for equation (5 ) .  with L(s)  as given in equation (6). The 
motion of the roots s, , as f increases, is indicated by the mows. 

make the substitution 9 ( p )  = p 2 y ( p )  and measnre all magnitudes in units of M ,  then 
9 ( p )  satisfies the equation 

where 

and E < 2 .  It is readily seen that (2) can be satisfied by the following asymptotic 
behaviour 

V ( P )  (4) 

asp-co, where the constants fsl depend only on the coupling strengthf, and are roots 
of the equation 

.a@)= 1 -*(s) =o ( 5 )  

with 

L(s)=: lom dr f - ' k ( t ,  1, 
S 

in the domain -1<Res<l .  The roots ks, are close to i l  for small values off, and 
converge to zero along the real axis asfincreases towardsf,=4/a, beyond which these 
roots diverge along the Im s axis. This is illustrated in figure 1. If one of the constants 
which multiply thep"' terms is fixed by normalization, then the other remains uncon- 
strained, and this suggests that equation (2) has a continuous spectrum of eigenvalues 
E<2, for given values offand m. 

To proceed with a more rigorous treatment, we restrict ourselves to the physically 
most relevant cases whenfxh and seek continuous solutions of equation (2) such that 
p(p) /p+O,  asp-co. We analyse equation (2) by Mellin-transforming it to a singular 
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integral equation, using a procedure which was used previously, e.g. for investigating 
three-particle eigenspectra, with zero-range interactions, [9] and for analysing singular 
dispersion equations [IO]. In the case of different fermion and scalar systems with 
massless particles (M=m=O) a similar technique leads to a finite difference homogene- 
ous equations for the Mellin transforms, which have, though cumbersome, explicit 
solutions [l l] .  

For values of p greater than an arbitrary constant 2, we rewrite (2) in the form 

9 ( p )  =& jAm d4 k (p ,  q.o)9(q)  + b ( p )  P > A  (7) 
4 

where $(p )  is the difference between the right-hand-side of (2) and the first term on 
the right of (7), and which we will formally regard as a given <unction. We introduce 
the dimensionless parameter x = p / 2  as well as the functions 

&3 = 9(W B(x) = b(W (8) 

and their Mellin transforms 

@(s) = [- dr x"-'@(x) Re s> -1 

where, also 

The contour C I  in (10) must he chosen such that, in going from -im to ioo, it passes 
to the left of all the singularities of @(s) (given that we are interested in the general 
solution), and in such a way that Res> -1. Note that the integral in (IO) vanishes for 
x < 1. Use of the above Mellin transforms allows us to rewrite (7) as the singular integral 
equation 

where s lies to the left of the contour c I .  The solutions of the singular integral equation 
( 1 1 )  are characterized [I21 by an index v, which spedes  the increase in the phase of 
the complex function I/-/.(s) as s changes along the contour of integration, namely 

. lim 

4 s )  ' I  -im ' 

I 
V=-hh- 

2K 

The roots of the equation (5) lie on the real axis, at *SI, h2,. . . , where O < S I  < 1, 
2<s2<3,etc. Consideracontourc,,asillustratedinfigure 1,forwhich-1 <Res<-sl .  
It corresponds to the index v(cI)= 1. For such a contour the homogeneous equation, 
corresponding to (1 1). has a unique (canonical) solution which, for values of s that lie 
to the left of the contour cI ,  can be written in the form 
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where d is an arbitrary constant such that Re d> 1. We note that the function &(s) is 
independent of the constant d. The general solution of (1 1) can be written as 

D V Shapoval et a1 

@(d =A&($ + @P(d (14) 

where A is an arbitrary constant and @p(s) is a particular solution of (1 l), that is 

Applying the inverse Mellin transform to (14), we obtain the result 

@(~)=A@o(x)+@p(x) x> 1. (16) 

Recalling that, since the inhomogeneous term in (7) is, in turn, specified by the solution 
@(x), QP(x) in (16) can be expressed as an ordinary one-dimensional integral of p ( x ) ,  
upon interchanging the order of integration. If we now reinstate the variable p = Ax, 
and combine equation (16), for p > A., with equation (2 )  for p < A, we can replace (2)  
by the inhomogeneous integral equation 

which has a piecewise continuous kernel 

where 

and 

with 

=O i f x c l  (21) 

and B(p)=O forp<O and B(p)=l  f o r p > O .  The function &(p/A) in (17) is actually 
a solution of the homogeneous equation corresponding to (7). 
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It is convenient to express the meromorphic function A@) of (5) as an infinite 
product of factors involving the poles and zeros of the function 

On substituting this expression into (13), we obtain the result 

s- (2n - 1) 

It then follows that 

The ‘-’ superscript on cl is meant to indicate that s lies to the right of the contour CI. 
We note that P(q, s) has no poles in the domain Res> - 1. Therefore T(q, s) has poles 
at -sl, sl, sz, s3,. . . in the domain Res> -1, which orginate from I/A(s) and &(s), 
as well as poles at points 2, 3, . . . which arise from R(q, s) (the pole of R(q, s) at s= 1 
is compensated by the zero of l/A(s)). It then follows that 

m, q)=d’e(P-~)h(q)iq+Ko(p, 4 )  (27) 

h(q)=-R(q, -sI) Res l / A ( - s l ) - P ( q ,  -sI) Res @o(-s,) (28) 

with 

where the kernel K&, q )  differs from Kl(p, q)  in that the contour cI is replaced by the 
contour co in (18). The contour co lies in the domain -sl <Res-+ (in figure 1 CO is 
chosen to lie along the imaginary axis). The leading asymptotic behaviour of Kt(p, q )  
is determined by the &st term on the RHS of (27), that is Kl(p,  q ) - p s C Q z  forp, q-tco. 
This means that the kernel GCp, q) = q(p)K~(p, q)q-‘(q) of the integral equation for 
the function q*(p) = q ( p ) q ( p )  is of h i t e  norm. provided that ~ ( p )  - P - “ ~ ” ~  forp-rm. 

3. General characteristics of the solutions 

As discussed above, the homogeneous equation (2),  which is not of the Fredholm type, 
has been replaced by an inhomogenous Fredholm equation. Hence, equation (17) has 
a unique solution q ( p )  (which is independent of a) for all E< 2 which are not coincident 
with the eigenenergies of the integral operator with kernel &(p, q). The arbitrary 
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constant A is fixed by normalization. Thep-tco behaviour of the solution, as generated 
by the relevant asymptotics of the inhomogeneous term and the kernel of (17), is 

~ p )  = a(p"+ alpJ'- '+ a2ps1-*)+ p(p-"+p,p-'l-') + O(P-~) (29) 

a1 =(E-fm)l(241 -81)) p1 =(E-fm)"l +Sl)) (30) 

D V Shapoval el al 

where 

and 

az= (E-fm+fm'(l -SI) tan(ns,/2)- I)/(M(2-s1)). (31) 

The quantities L(l +s,). L(2- s i )  that enter into the expression for PI, a2 are obtained 
by analytic continuation of (6) into the domain Res> 1. One of the constants a or p 
may be taken to be arbitrary, but the quotient P/a is a given function of E which is 
determined by the detailed structure of the kernel of (2). The absence of a term of the 
type p-l in (29) is a result of the fact that T(q, s) has no pole at s= 1. The terms of 
orderp*s"-',$'-2 arise from the expansion of T(q, s) for q-tco. The terms withcommon 
a and p factors have been grouped separately in (29). If we arrange them in decreasing 
order as p-00, we mill obtain, for s > i ,  that is O < f <  1, the sequence p",ps'-',p-s', 
~ * ' - ~ , p - ~ l - l  . . . . For the case s.1, that is 1 <f%, the order of the sequence is differ- 
ent: the second and third terms must be interchanged, as must the fourth and fifth, 
and so forth. 

The solution of the original equation (1) has, in general, the behaviour y ( p ) -  
apSapI'-' as p-tco. This is not a physically acceptable behaviour, since for example, the 
integral which defines the average kinetic energy 

diverges at the upper limit for allsE(0, 1). For values ofse(f, 1) even the normalization 
integral 

is divergent. Evidently, if ~ ( p )  is to describe a bound state it must decrease faster than 
p-'asp+co. 

Let us consider solutions of (2) such that q(p)+O, when p- t co .  In light of the 
above discussion, we must choose the contour co rather than c1 (figure 1) in the inverse 
Mellin transform of (10). With this choice of contour the index v ,  which characterizes 
the singular integral equation (ll),  takes on the value ~ ( c o )  =O. In that case, equation 
(11) has the unique solution 

K s )  = P P W  (32) 

where Pp(s) is given by equation (15) but with the contour cI replaced by eo. Performing 
the inverse Mellin transform we obtain, from equation (32), the result 
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This Fredholm equation (33), with the kernel &(p, q), which was obtained in section 
2, can have a discrete spectrum of eigenvalues, E,, in the domain E < 2 ,  since &(p, q) 
is an analytic function of E in the domain of the semi-axis E < 2 .  The eigenfunctions 
corresponding to E, are simultaneously solutions of (17) with Ai=O and 

In other words q i ( p )  are also eigenfunctions of the integral operator with the kernel 
K , ( p ,  q). The solutions of (2) which decrease as p-co have the behaviour pi@)- 
pep-". with p ,  f O  in general. We now show that the solution q(p) of (2) becomes p,(p) 
as E+Ej.  On multiplying equation (2 )  for E = &  and for E#E,  by appropriate multi- 
pliers, subtracting and integrating from p = 0 to p = A, we obtain 

where we have set p = h  and taken d+m. The two-dimensional integral in (35) is not 
zero, hence the constant a, which appears as the coefficient of the first term in (29), 
goes to zero as E+&, and so as p(p)+p6{p). We stress that this fact is based totally 
on the asymptotic behaviour of the kernel of (2) at large momenta, and so it holds true 
for any other kernel that is different from this one only in the region of finite momenta. 
This shows, incidentally, that the eigenvalues E, are non-degenerate. Equation (35) also 
implies that the solutions p(p) for E#Ei are not orthogonal (with the weight function 
p-') to q j ( p ) ,  in contrast to solutions that correspond to different E,. This is to be 
expected, since p(p) and q,(p) satisfy different boundary conditions. 

In summary, an equation of type (2), for given k e d  values of m and fc(O,f.), has 
a unique solution for every E < 2  (except, possibly, in some special cases) with a continu- 
ous dependence on the energy. The high-p behaviour of the solution is given by equation 
(29). In the continuous spectrum E < 2  there may exist values E, for which the solutions 
behave asp-"' for>-m, and for which a(EJ = 0 and p(EJ ZO. These particular values 
E, correspond to eigenenergies of two-particle relativistic bound states of equation (1). 
The solutions which behave as JP forp+co when E#Ei  are not physically relevant. 

4. R e d u d  equation 

The non-physical solutions, which grow asp" for large p ,  disappear if a high-p cut-off 
is introduced into equation (2). Such a high-p cut-off may be physically motivated, for 
example by the finite size of the particles in question, etc. Let Ei(A) and qi(p, A) be 
the eigenvalue and corresponding eigensolution of ( 2 )  for the case where the upper 
limit on the integral is A. When A+w, &A) approach E, in accordance with 

E,(A) =E,  - ejA-% (36) 
where 

and pi@) is a solution of (3) normalized such that q d p )  =p-" +. . . , forp+cu. There- 
fore the introduction of a high-momentum cut-off, A, into (2) allows one to extract 
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the discrete energies E, from the E< 2 continuum. In principle, this procedure can also 
be used to determine scattering solutions 1131. The direct numerical solution of ( 2 )  
using quadrature formulas, automatically brings with it a cut-off procedure. However, 
as is evident from (36), the accuracy of such numerical solutions decreases asf+& since 
sl+O. This is evident, for example, from the results presented in [3] and (41. In order 
to obtain results of a k e d  accuracy, A would have to grow as exp{(const.) 
Cfc-f)-'"} asf+L. In the case of approximate variational solutions [4], the compo- 
nents for which 9 ( p )  -p" a s p - m  are avoided by the appropriate choice of a normaliz- 
able trial function, and the accuracy of the solution depends entirely on the choice of 
trial wavefunction. 

We now consider a different method of direct numerical determination of the eigen- 
solutions. The solutions of (2) for .E= Ej have the behaviour (a = 0, P = 1 in equation 
(29)) ,  forp-a,: 

D V Shapoual et al 

9 j ( p )  =p-'l+ P Ip-" - I + Or(p-'). (38 ) .  
In light of the absence of a term of order p-I, it follows from (2 )  that cpi(p) satisfies 
the condition 

JOm dq(9k9) - 4-=9 = 0. (39) 

Thus we can separate out the slowly decreasing parts of 9 j ( p ) ,  by introducing the 
function 

XLP) = 9 6 0 )  - 5 ( P )  (40) 

where 

Substituting (41) into ( 2 )  and using the condition (39), we obtain the following equation 
for the x i ( p )  function: 

where 

The inhomogeneous part X ( p )  and the solution x ( p )  of (42) behave asp' for p - 0  and 
a ~ p - ~ f o r p - o o .  

The analysis of the non-Fredholm type integral equation (42) is very similar to that 
discussed in the previous sections. The contour of integration in (ll), which we denote 
by CA, in this case Lies in the domain 1<Res<2 (figure l), and L(s) is taken to be the 
analytic continuation of the expression given in (6) into this domain. Since v(cb)=O, 
equation (1 1) has a unique solution which is given by (32).  The inverse Mellin trans- 
formation changes (32) into an inhomogeneous Fredholm integral equation, where the 
inhomogeneity arises from X ( p ) .  This means that (42) has a unique solution for all 
E < 2 ,  except for particular values of the energy for which the solution is obtained from 
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the homogeneous counterpart of (42). Those values of the energy E=Et ,  at which the 
condition (39) is satisfied, correspond to the bound state eigenvalues of the system. The 
corresponding eigenfunctions are determined using (40) and (41), where 

XiP) = X ( P ) I € = E , .  

The principal advantage in the transformation of (2) to the form given by (39)- 
(42) is in the fact that ~ ( p )  decreases sufficiently quickly at high momenta. The equa- 
tions (42) and (39) can be solved by standard numerical methods. The effective introduc- 
tion of a high-p cut-off, A, in (42) and (39) leads to an error in Ej( f )  which decreases 

as 
l/A as A+a) for all f in (0,f.). This implies the boundedness of the energy spectrum 
from below, since this is the case for 6aite A. The number of energy levels remains 
6nite in the neighbourhood of E=2. This can be seen from the fact that the integral 
which determines the norm of the kernel remains convergent at the lower limit. In other. 
words, equation (2) has a finite number of discrete eigenvalues, E;. 

5. Qualiiative features of the solutions and examples 

The positive definite nature of the kernel k ( p ,  q, m)  in (2), that is, 

lom lom dp dq WP, q, & ( P ) P ( ~ )  '0 

for any p ( p )  implies that the values of E, should decrease with increasingfor decreasing 
m. With decreasing m, the levels Ei appear at the point E= 2, f =L for some m = met. 
Let us denote by,& the value of the coupling constant, which corresponds to the point 
where E, begins to deviate from E=2. In that case we obtain the result 

f . - $ , i - a , h r m ) 2  m-rm,. (43) 

2- E;= bdf-lbiY f - f i  (4) 

For a given, k e d  value of m, the behaviour of E, is characterized by the following: 

and 

Ei-Eci-cdL-f f+L. (45) 

Since all magnitudes are measured in units of M, bi in (44) and c, in (45) are functions 
only of m/M,  while a, in (43) is a numerical constant. 

The results given in equations (43)-(45) follow from the identity 

which holds for the solutions of (1) that correspond to different values of the parameters, 
and by using the asymptotic behaviour that y(p)-[pZ+M(2M-E)]-' when 
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2 

E 

1.5 - 

1 
0 0.5 1 fC 

f 
Figure 2. Eigenenergy spectrum of equation (2). form =0.144. The integers 1 and 2 denote 
the levels E, and E, .  

E - t2M,p-+O,  and that ~ ( p )  - P - ~ - "  whenp-rco. Identity (46) is a consequence of the 
symmetry of the kernel k ( p ,  q, m)  of ( 2 ) .  It follows from (46) that, for k e d  m and M 

This means that the fact that E, decreases with increasing f holds true even if k ( p ,  q, m) 
of (2) is not positive-deiinite, provided that it is symmetrical i n p  and q. 

Figure 2 is a plot of solutions of equation (1) for E,( f )  with the mass ratio (pion/ 
nucleon) m=0.144. These were obtained numerically by solving (42) and (39) using 
Gaussian quadrature formulae, having first evaluated the inhomogeneous term X(p) 
to a su5ciently high accuracy. The system supports only two hound states, El and E2, 
which appear athl=0.24 andh2=0.83 and descend to Ec1=1.15 and Ec2=1.93 as 
f-f.. In the m-0 limit, the asymptotic behaviour is of the fonnf.iwngci(l + O(m2)), 
where gd is the critical constant of the corresponding non-relativistic problem, that is 
g., = 1.68, ga=6.2, etc. When m=O there is an unlimited number of levels, which begin 
at f=&=O, and for small values of the coupling constant they have the behaviour 

Ed= 2 - (q - (q 4- '3 + O( f 5 )  
2n 2n l + i  4 (47) 

where n is the principal and 1 is the orbital angular momentum quantum number. The 
result (47) is easily obtained using first-order perturbation theory with respect to the 
well known non-relativistic solutions. 

It is of interest to note that for the case of two particles of distinct mass M I  #M2 
and M I  = M ,  M2-tco, when (1) reduces to an equation for a single particle moving in 
a Yukawa potential (with E / 2  replaced by E and f/2 by f ), the perturbative expansion 
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(47) coincides with that for the Klein-Gordon (KG) equation with a scalar Coulomb 
potential. The difference arises at orderf', since for the KG case the expansion contains 
only even powers off. 

Forf2L the index, v ,  of the singular integral equation (1 1) remains e q d  to unity. 
Therefore (2) has a unique solution for all E<2. Its behaviour, forp+m, is charac- 
terized by the poles of the function l/&(s) in the domain Resc(-l, 1). For f=h  the 
function I/A(s) has a pole of order two at s=O: 

q(p)=a l n p + P + .  . . p-00 (48) 

q(p)=y sin(lsll l n p + 6 ) + .  . . p-00. (49) 

F o r f i x  the poles at fs, diverge along the imaginary axis, that is 

This corresponds to the 'collapse to the centre' phenomenon, which also arises in non- 
relativistic problems with a -g/rZ,g>& potential, or in the KG case with a Coulomb 
potential -a/r  if a>&. We note that forf>L it is also possible to obtain a discrete 
spectrum, if the parameter 6 in (49) is held fixed. The value of 6 could he specifted by 
considerations more general than those of equation (2), such as occurs in the analogous 
non-relativistic three-particle problem with zero-range interactions [9]. In other words 
the case f>h requires a more elaborate determination of the interparticle interaction 
than that which is contained in (2). 

The above considerations apply, in their general features, also for I f  0 partial waves, 
and for particles with spin. The corresponding equations differ from (2) in that the 
kernel, k(p, q, m), is different and often more complicated, yet generally retains its 
logarithmically divergent character at the upper limit. Thus we investigated the equa- 
tions obtained in [4] using the present technique. (These equations describe relativistic 
two-fermion bound states in QED with the inclusion of static Coulomb and transverse 
photon exchange interactions.) It turns out that the 'So, 3 P ~ ,  'SI, 3 P ~  equations corre- 
spond to functions L(s) for which the roots, hsl, of (5) follow the trajectory of figure 
1 asfincreases. In other words these cases are totally analogous to that of (2), considered 
in the present work. 

A quite different situation arises in the case of the 'PI, equations A( I), A(7) and 
A(8) of [4b], for which the L(s) function has the form 

S Izs 3s 7CS 
L(S) = - - tan -+- cot -. 

4-d 2 1-sz 2 

The character of the solutions of the equation for the 'PI states is determined by the 
roots of (S), with L(s) as given in (50), in the domain Res>-1. Figure 3 illustrates 
the behaviour of the roots in the domain Re S E ( - I ,  2) as well as those which appear 
here from the domain Re s < -1 asfincreases. The positions of the roots for particular 
values of the coupling constant fa re  denoted by the letters A, B, C, D and 0. When 
f=O there are four roots at the points A. Asfincreases they move along the real axis 
and whenf=fi= 1.0046 they converge in pairs to the points B. 

Thereafter the roots become complex and when f=&= 1.6105 they cross the lines 
Re s = i l  at the points C. When f=f,=2.0918 the roots come together in pairs at the 
points D. As f increases further, the roots move along the imaginary axis, two in 
opposite directions, and two towards each other. When f becomes equal to f=&= 
2~/3=2.0944 (this critical value was obtained in [4]), the roots arrive at the points 
denoted by 0. As f increases still further, two roots continue to diverge along the 
imaginary axis, while the other two diverge from the origin of coordinates along the 
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,A B . A, 
-2 - 2  

I -1 I 
Figure 3. The complex s plane for equation (5) with L(s) as given in equation (50). The 
letters A, B, C, D, 0 correspond to values of the coupling constant f = O J  ,h,h and f,, 
respectively (see text). The arrows indicate the motion of the roots sl l  as f increases. 

real axis.'Asf-rco these roots head towards kico and 40.9188 respectively (these points 
are not marked in figure 3). 

Forf<fi the contour of integration, co, in the inverse Mellin transform (lo), which 
lies in the domain Re s < - 1 to the left of all roots, is characterized by the index v(cJ = 
0. This means that, forf<h,  the equation can be reduced to a homogeneous Fredholm 
equation of the form (33) with a discrete eigenvalue spectrum. Furthermore, iffcfi, 
the solutions behave as p,,(g)-p-" when p-rco  (we have in mind here the smaller of 
the two roots st in (1,Z)). However, iffi < f < f i  their behaviour becomes fundamentally 
different from the standard non-relativistic case: even for the ground state these solu- 
tions have an infinite number of nodes, corresponding to the asymptotic behaviour 
p(p) -p-$ sin($ Inp+ PI), where s, =S; +is;. Correspondingly, the number of nodes is 
infinite in coordinate space at small distances. This anomaly is believed to be a manifes- 
tation, for sn6ciently large values off,  of the main characteristics of the equation's 
kernel: in addition to the divergence of its norm asp,  q-tco, the kernel is not sign- 
dehite at large p ,  q with its sign being dependent on the ratio p/q. By contrast, the 
kernels for the 'SO, 3P0, 'SI and ' P i  equations are positive-definite asp, q-co, and the 
behaviour of the wavefunctions in these cases is consequently normal. 

When f>fi two new roots from the domain Res<-1 appear in the domain 
Res> -1. The general solutions corresponds to the choice of contour c2, which lies in 
the domain Res> -1 to the left of all roots, and has an index v(c2) = 2. This means 
that the ' P i  equation, for pfi, can be written in the form of an inhomogeneous 
Fredhohn equation, like (17), with an inhomogeneous part that depends on the two 
free parameters. In that case (forf>Ji) there are solutions for all values of the energy 
and they are characterized by the behaviour p(p)-Ap4 sin@; Inp+ar) 
+ B P - ~  sin(s7 Inp+ PI) asp-rco. Purely decreasing solutions exist for particular values 
of the energy. They correspond to A=O, or to a choice of contour, e,, which, for 
example, lies along the imaginary axis. 

Among the continuum of solutions, forf>fi, there are none that are decreasing as 
p-tco. Thus the d o m a i n D 5  corresponds to a continuous energy spectrum. Whenf 
increases beyond& the behaviour of the solutions at large p changes substantially, but 
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the spectrum remains continuous. In short, the 'PI case is characterized by five critical 
values of the coupling constant, & = 0 (at which the energy eigenlevels appear), and ft 
to fd. Bound 'PI states exist in the domain& <f<h. 

6. Parity doubling and mass degeneracy at critical coupling 

Previous numerical solutions of relativistic two-particle bound state equations near the 
critical pointf=f,, beyond which the bound state eigenenergies EiCf,) cease to be real 
[4b, 5, 14, 151, seem to suggest that the physically intriguing phenomenon of panty 
doubling and mass degeneracy of the eigenvalues, E,, sets in. For example, for two- 
fernion systems like positronium e'e-, the Jp O-('So) and O'(3P0) states, which corre- 
spond to quite distinct energy eigenvalues at low coupling, seem to become degenerate 
asf-h [14, 151. The same appears to occur for the l-('S,) and 'PI levels. This degener- 
acy, asf-h, might seem to be further Widened to include unequal mass fermion systems' 
such as .u'+e-. Thus, the numerical solutions in that case [4b] may be interpreted as 
suggesting that there is also mass degeneracy at critical coupling, in that the Ei values, 
not only for opposite panties but also for different M I / M 2  values, become degenerate as 
f - f .  Such interpretations, however, have to be checked carefully since all the previous 
numerical solutions referred to above suffer from a decrease in accuracy asf-f,. 

However, the method discussed in the present paper allows us to make firmer 
conclusions about these supposed parity and mass degeneracies. To begin with, it is 
certainly true that the critical values, h, of the coupling constant exhibit panty and 
mass degeneracy. This is because the function L(s) of (6) is determined only by the 
behaviour of the relevant equation's kernel at large momenta. Thus the functions L(s) 
are identical for the O*('So and 'Po) states of a two-fermion system (cfequations (Al), 
(A3) and (A4) of [4bJ): 

S 

Moreover, equation (51) is valid for both the equal-mass (e'e-) and the unequal mass 
(pte-) two-fermion systems. Similarly, for the l*('S1 and 3P1)  states (cf. equations 
(AI), (AS) and (A6) of [4b]) the function L(s) is given by 

L(s) = - 2(1 -?) tan(?)+& cot(?). 
s(4-?) 

This confirms the critical coupling values (when ( 5 )  with the relevant L(s) has the root 
s=0),f,=8n/(4+3zZ) for the O* states, andf,=8z/(8+zZ) for the I *  states, as well 
as the independence off, from the fermion masses, as was claimed in [4b]. 

On the other hand, physical quantities, including in particular energy eigenvalues 
E,, are found to be both state and mass dependent asf-h. For example calculations 
for the 0' states, based on equations (Al), (A3) and (A4) of [4b] (which were trans- 
formed into the form, analogous to (39)-(42) of the present paper) resulted in merent 
limiting eigenenergies, EOj, for the 0' states. Thus, for the case of equal masses, MI = 
M2= M (positronium), these are found to he E J M =  1.2 and 1.5 for the ground O-('So) 
and O+('PO) states respectively. In particular we note that El does not descend to zero 
asf-h, as might be suggested by the presence of the analytic solutions y ( p ) = l / p 2  
when E = M = O  andf=f,. (This shows that the E, M 4 ,  and M#O,f+A limits are 
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not equivalent.) Lastly we note that the symmetry of the equations' kernels for these 
cases leads to a relation of type (46) and, hence. to the decreasing character of the non- 
degenerate levels Eicf) ,  with the limiting behaviour given by (45). 

7. Concluding remarks 

We have presented an analysis of the solutions of integral equations with a logarith- 
mically divergent kernel, that arise in the relativistic description of two-particle bound 
states. The continuous solution spectrum is shown to possess a discrete set of normaliz- 
able eigensolutions at particular values of the energy, provided that the coupling con- 
stant is smaller than a particular critical value. We have shown how the equations can 
be transformed to a form that is particularly amenable to numerical solution by standard 
quadrature formulas for all relevant values of the coupling constant. We have illustrated 
this procedure on specific examples, including recent variational Hamiltonian treatments ' 
of two-fermion systems, such as e'e- or p+e- [3 ,4,  14, 151. We also confirm the inde- 
pendence of the critical values of the coupling from the fermion masses and the parities 
of the states, but demonstrate that the eigenenergies do not exhibit such degeneracies 
at critical coupling. 
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